8-2

Study Guide and Intervention

Linear Equations in Two Variables

A function can be represented with an equation. An equation such as y = 1.50x is called a linear equation. A linear equation in two variables is an equation in which the variables appear in separate terms and neither variable contains an exponent other than 1.

$$y = x + 1$$
, $y = -2x$, $y = \frac{1}{3}x$

Nonlinear Equations
$$y = x^2 + 1$$
, $y = -2x^3$, $y = \frac{3}{x}$, $xy = 4$

Solutions of a linear equation are ordered pairs that make the equation true. One way to find solutions is to make a table.

Example 1

Complete the table.

Use the results to write four solutions of y = 4x - 10. Write the solution as ordered pairs.

X	y=4x-10	У	(x, y)
-1	y = 4(-1) - 10	-14	(-1, -14)
0	y = 4(0) - 10	-10	(0, -10)
1	y = 4(1) - 10	-6	(1, -6)
2	y = 4(2) - 10	-2	(2, -2)

Example 2

A linear equation can also be represented by a graph. The coordinates of all points on a line are

solutions to the equation. Graph y = 4x - 10 by plotting ordered pairs.

Plot the points found in Example 1. Connect the points using a straight line.

Exercises

Find four solutions of each equation. Write the solutions as ordered pairs.

1.
$$y = 2x + 4$$

2.
$$v = -3x - 7$$

3.
$$4x + y = 5$$

Graph each equation by plotting ordered pairs.

4.
$$y = -4x$$

5.
$$y = x + 6$$

6.
$$-2x + y = 8$$

Skills Practice

Linear Equations in Two Variables

Find four solutions of each equation. Write the solutions as ordered pairs.

1.
$$y = 8x - 4$$

2.
$$y = -x + 12$$

3.
$$4x - 4y = 24$$

4.
$$x - y = -15$$

5.
$$y = 7x - 6$$

6.
$$y = -3x + 8$$

7.
$$y = 12$$

8.
$$4x - 2y = 0$$

9.
$$4x - y = 4$$

Graph each equation by plotting ordered pairs.

10.
$$y = 3x - 2$$

11.
$$y = -x + 3$$

12.
$$y = -\frac{1}{2}x + \frac{3}{2}$$

13.
$$y = -2x - 5$$

14.
$$y = 4x - 8$$

15.
$$y = \frac{2}{3}x - 2$$

16.
$$y = -5x$$

17.
$$y = -2x + 6$$

18.
$$y = 5x + 1$$

8-2

Practice

Linear Equations in Two Variables

Find four solutions of each equation. Write the solutions as ordered pairs.

1.
$$y = x - 5$$

2.
$$y = -7$$

3.
$$y = -3x + 1$$

4.
$$x - y = 6$$

5.
$$y = 2x + 4$$

6.
$$7x - y = 14$$

Graph each equation by plotting ordered pairs.

7.
$$y = 2x - 1$$

8.
$$y = -6x + 2$$

9.
$$y = x + 4$$

10.
$$y = 7$$

11.
$$y = 3x - 9$$

12.
$$y = \frac{1}{2}x - 6$$

COOKING For Exercises 13-15, use the following information.

Kirsten is making gingerbread cookies using her grandmother's recipe and needs to convert grams to ounces. The equation y=0.04x describes the approximate number of ounces y in x grams.

13. Find three ordered pairs of values that satisfy this equation.

14. Draw the graph that contains these points.

15. Do negative values of x make sense in this case? Explain.

8-2 Enrichment

Equations with Two Variables

Complete the table for each equation.

1.
$$y = 7 + x$$

X	У
-4	
	5
	1 ,

2.
$$y = 2x + 4$$

x	У
6	
	12
	2)

3.
$$y = x - 9$$

x	У
3	
	-4
	-9

4.
$$y = 3x - 2$$

X	У
2	
	-5
	7)

5.
$$y = \frac{x}{4}$$

X	У
8	
	4
	-6

6.
$$y = -6x + 1$$

X	у
1	
	-11
	13

7.
$$y = 9 - 2x$$

X	У
3	
	7
	1)

8.
$$y = \frac{x+5}{3}$$

9.
$$y = \frac{x}{2} + 5$$

X	У
8	
	8
	10

10.
$$y = x^2$$

X	У
2	
	1
	16

11.
$$y = x^2 - 3$$

x	У
3	
	22
	-3

12.
$$y = 1 - 2x$$

X	У
-1	
	7
	11